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Abstract

An important property of some metallic alloys, such as NiTi, for technological applications is their coupled thermo-
mechanical shape memory behavior. This is due to temperature-dependent first-order displacive (martensitic) trans-
formations in which their crystal structures transform between a higher symmetry cubic phase and lower symmetry
phases (thombohedral, tetragonal, orthorhombic, or monoclinic).

In a recent paper, Elliott et al. (J. Mech. Phys. Solids, in press) proposed a nano-mechanical model based on
temperature-dependent atomic potentials to explicitly construct an energy density W(F;0) to find all the different
equilibrium paths and their stability of a stress-free bi-atomic perfect crystal as a function of temperature. In this work
we investigate the influence of hydrostatic pressure. In general, hydrostatic compression increases the critical tem-
peratures on the principal branches. For the same absolute value, hydrostatic tension is found to have a more pro-
nounced effect on the equilibrium paths than hydrostatic compression. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

First-order displacive (martensitic) phase transformations between solid state phases are the underlying
mechanism responsible for the technologically important thermo-mechanical properties of shape memory
alloys (SMAs). These properties are the shape memory affect and the pseudo-elastic behavior. The first
refers to the capacity of the alloy to erase relatively large (up to 8%) mechanically-induced strains by
moderate temperature increases. The second pertains to the ability of the alloy to accommodate strains of
this magnitude and recover upon unloading via a hysteretic stress—strain loop.

Of the long list of alloys that have these remarkable properties, NiTi-based alloys have the best memory
properties as polycrystals, and as a result, are the most popular and commercially viable. It is for this
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reason that the present work is focused on an ordered equi-atomic binary alloy as our prototype for a shape
memory alloy.

Instabilities at the nanoscale, via the transition from cubic (austenite) to monoclinic (detwinned mar-
tensite) phases, can manifest themselves at the polycrystalline macroscale through complicated mechanisms
of localization and propagating transformation fronts. The modelling of discontinuous strain fields (e.g.
Shaw and Kyriakides, 1998; Shaw, 2000) implies serious technical problems (due to the loss of ellipticity of
the governing equations). This is one of a number of issues that perhaps explains why the continuum level
thermomechanical description of SMAs has lagged behind their materials science understanding.

Thanks to the work of Abeyaratne, Bhattacharya, Ericksen, James, Knowles and many others, a con-
tinuum mechanics methodology based on finite strain thermoelasticity has taken shape since the early
1980s. This approach consists of assuming the existence of a phenomenological energy density W (F,0)
(where F is the deformation gradient and 0 is the absolute temperature) with local minima in F (potential
wells) that correspond to different stable phases of the crystal (see James, 1986). This approach has been
satisfactory in predicting the fine microstructures observed in SMAs (e.g. see Abeyaratne et al. (1996) for
application to laminar microstructures of CuAINi). The same framework has also been adopted by Er-
icksen (1992), who uses symmetry properties of the perfect crystals to show different equilibrium paths can
emerge as bifurcated solutions from the principal branch of the higher symmetry austenitic (cubic) phase.

However, important questions pertaining to which phases can coexist at a certain temperature remain
unanswered by the phenomenological construction of . One reasonable way to improve the situation is to
derive the corresponding energy density from temperature dependent atomic potentials. For purely me-
chanical loadings and mono-atomic cubic crystals this approach to studying the stability of crystals can be
traced back to Born (1940). More recently Milstein and Hill (1977, 1978, 1979) studied the dependence of
bulk and shear moduli of such crystals and their dependence on hydrostatic pressure. In a recent paper,
Elliott et al. (in press) introduced thermally-dependent atomic potentials to explicitly derive W (F,0) and
studied the resulting symmetry breaking stress-free bifurcated equilibrium paths and their stability.

The next logical step is to investigate the influence of stress on the temperature dependent equilibrium
paths and their stability. As a first step, the present work studies the response of an infinite, perfect bi-
atomic crystal under hydrostatic pressure. Following a brief description of the model in Section 2 we
discuss the existence of critical points on principal equilibrium branches (cubic crystals) and the character
of the emerging bifurcated branches (lower symmetry crystals) in Section 3. The results of the numerical
calculations are discussed in Section 4.

2. Problem statement

The boundary value problem of interest consists of an infinite lattice with boundary conditions con-
sistent with an external hydrostatic pressure p. The lattice is subjected to a uniform symmetric deformation
U = U" (there is no loss of generality in this assumption—it simply excludes rigid body rotations). Con-
sequently the relative current position vector r;; = r; — r; is related to its reference counterpart R; = R; — R;
by

ijs
where (-) indicates simple tensor contraction (A - B = 4;;8;). Assuming that ¢,, the atomic potential of atom

i, is a function of the current position vectors r;;, where j # i denotes all other lattice positions, the free
energy density, W, of the crystal at temperature 0 is

1
27, 4

i=1

W(U, 6) = i(r,'hl'l'z, e ,r[([,1)7l‘[<i+1), ey 0) (22)
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In the above expression ¥; is the reference volume of the unit cell and K is the number of atoms in the unit
cell. For the case of a crystal subjected to a hydrostatic pressure p, the corresponding total energy of the
system per unit reference volume is

&(U;0,p) = W(U;0) + pdet U, (2.3)

where p is assumed positive in compression. The conservative system’s equilibrium solutions at a given
temperature and pressure are found by extremizing its energy with respect to U, namely

o6 oW B
=0 = ag Tpdet(UUT =0, (24)

A solution to the above equation is a stable equilibrium point if it is a local minimizer of & with respect to
U, ie. if
*&
in |[0U:——:06U| >0 2.5
i { dUdU } ’ 25)
over all positive definite, symmetric rank two tensors dU. Here (:) indicates double tensor contraction
(A:B= Aijlekl)-

Although the energy density W can be calculated for any type of atomic potential, a pair potential will be
used in the following calculations for reasons of computational simplicity. For the case of an ordered bi-
atomic CsCl-type crystal (the austenite phase of NiTi) with atom species a and b, the internal energy density
of the crystal simplifies to

w(U;0) = % { Z (@00 (Fais 0) + Doy (i3 0)] + Z [¢bb(”bj§ 0) + bup(raj; 0)] }a (2.6)
r i J
where the subscripts @ and b on r denote the corresponding atoms in a unit cell, / and j range over all  and b
atoms respectively within a sphere of influence, and ¢,,, ¢, ¢;, denote the pair potentials between atom-
types a—a, a—b, and b-b, respectively.
The temperature-dependent Morse-type pair potential ¢(r;0) adopted for the ensuing numerical cal-
culations has been introduced by Elliott et al. (in press), namely

—2m(0)<f(’9)—1>] —2expl—m(9)<f(’9)—1>”, (2.7)

where the bond strength A(6), bond stiffness parameter m(6) and bond length #(0) are given by

aa’

¢(r;0) =A(9){ exp

a0 =afi- ]

m(0) = mo[l + ap (o ;ref)}, (2.8)

01w (1-0)]

Here 0, is the reference temperature, rq is the bond length at 6 = 0, 6,, is the melting temperature, 4 is the
binding energy, my is the bond stiffness parameter, and o, is the stiffness temperature coefficient. It is un-
derstood that the above defined pair potentials and their coefficients depend on the bond type a—a, a—b, or
b-b, but these indices are omitted in (2.7), (2.8) in the interest of notational simplicity.

Based on the above presented equations, we seek the solutions of (2.4) (as a function of the temperature
for a particular pressure) and investigate their stability.
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3. Critical points and stability of principal branches

Despite its apparent simplicity, the tensor Eq. (2.4) consists of six nonlinear equations. Due to the cubic
symn})etry of the reference configuration, the simplest and most obvious solution is a uniform dila-

tion U(0,p) = A(0, p)I (I the rank two identity tensor) which is termed the “principal solution” and which
corresponds to the austenite phase with a CsCl crystal 0s‘[ructure. For relatively low pressures, it is rea-

sonable to assume that the austenite (principal) phase U is stable, i.e. that the corresponding minimum

eigenvalue of 024 /0U0U is positive, at least near the reference temperature 0,, defined as the temperature

where A(6;,0) = 1. When the temperature decreases away from 0,, it reaches a value 0.(p), termed the
0

“critical temperature” at which the austenite phase U looses positive definiteness of &, i.e.

0
6 (V0.0 ps00))
:U=0; (I=1,2,...,N). 3.1

oUdU y o (I=12,....N) (3.1)

Here the N distinct eigenmodes U guide the search for lower symmetry equilibrium solutions which emerge

from the principal branch at 6.. The asymptotic construction of these post-bifurcated equilibrium paths

uses the same methodology as the zero pressure case, which is presented in detail by Elliott et al. (in press),

and hence needs not be repeated here. Only the classification of the critical points and their pressure de-
pendence are discussed.

To this end, and due to the cubic symmetry of the crystal, (3.1) can be rewritten in component form as

[ LS, LS, +pi LS, +pa 0 0 0 [ U,y 1Y
L, + pi LS, LY, + pi 0 0 0 Uxn
LS+ ph Ly +ph L5, 0 0 0 Uss
c 2/2 - 0, (32)
0 0 0 L —p 0 0 20,
0 0 0 0 LS, — p*? 0 2Uy
L0 0 0 0 0 Ly —p'? ] [2Uy |
where
. *wW . *wW . o*wW
Lhn=357 1. v Lo =530 v Lu=35 ; (3.3)
11 1(U(0c,p),0c) 1 22 (U(be,p),0c) 12 1(U(0c,p),0c)

are the moduli of the cubic phase at the critical temperature.
The critical points on the principal solution path are thus found to be the zeros of the determinant of the
6 x 6 matrix in (3.2), namely

(L§y +2L5, + 2p2) (LS, — L, — pA)* (LS, — pA/2)" = 0. (3.4)

)
These critical points are either limit loads or bifurcation points according to whether 3?6 /0Ud0)|, : U # 0,
or =0, respectively (see Triantafyllidis and Peek, 1992). Hence, fo(rl)the case of the simple root of (3.4) (N =

1, LS, 4 2L, 4 2p/ = 0) the corresponding unique eigenmode is U = I and the above mentioned criterion
shows that this critical point is a limit load.
For the case of the double root of (3.4) (N = 2,L{, — L{, — pA = 0) a double bifurcation point exists with
two independent eigenmodes:
(1) 20 0 )
u=|0 -1 0|, U=]0 2 0 |. (3.5)
0 0 -1 0 0 -1
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Fig. 1. Cubic to tetragonal bifurcation.

For this case, the asymptotic analysis presented in Elliott et al. (in press) shows that three different
tetragonal phase branches (unit cell angles « = f =y = n/2, sides a = b # ¢) emerge at 6. from the prin-
cipal cubic phase in an asymmetric, transcritical type bifurcation depicted schematically in Fig. 1. It can
also be shown that all three tetragonal branches are unstable in the neighborhood of 6., independent of the
interatomic potential.

Finally, for the case of the triple root of (3.4) (N = 3, Lg, — pA/2 = 0), a triple bifurcation point exists
with three independent eigenmodes:

w 00 0] o [00 17 4 o 10
u={(0 0 1|, U=|0 0 Of, U=1]1 0 0 (3.6)
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Fig. 2. Cubic to rhombohedral bifurcation.
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Fig. 3. Cubic to orthorhombic bifurcation.

For this case, the asymptotic analysis shows that seven different equilibrium paths emerge at .. Four of
these paths correspond to different variants of a rhombohedral phase (unit cell angles o= f =
y # m/2,sides @ = b = ¢) which result by stretching the cubic unit cell along each one of its four main
diagonals. Each one of these paths is an asymmetric, transcritical type bifurcation depicted schematically in
Fig. 2 which can be shown to be unstable in the neighborhood of 6., independent of the choice of the
interatomic potential. The remaining three equilibrium paths emerging from 6. correspond to different
variants of an orthorhombic phase (unit cell angles o« = § = n/2,y # n/2, sides a = b # ¢) which result by
shearing two opposite faces of the cube and allowing the perpendicular edge to stretch independently. The
corresponding bifurcations are symmetric and are depicted schematically in Fig. 3. In the neighborhood of
0. they can be stable or unstable, and supercritical or subcritical, depending on the choice of the interatomic
potential.

4. Numerical results

Having gained a clear understanding of the character of the bifurcated equilibrium paths near the critical
points, we turn our attention to numerical calculations of the entire equilibrium paths in a temperature

Table 1
Pair potential parameters used in numerical calculation
Parameter a—a bond b-b bond a—b bond
7o 1 1.16 1.08
Om 1718 1943 1573
Ay 1 1.124 0.425
my 4 7 5.5

o 0 0 3
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range of 100 K (220 K < 0 <320 K) and for angles y in the range 30° < y < 120°. The parameters chosen for
the three different types of pair potentials are given in Table 1. The parameters of the like bonds are chosen
to give reasonable moduli (ratios) and thermal expansion coefficients near room temperature, which is also
chosen as the reference temperature (6, = 300 K). The parameters of the unlike bond are chosen so that the
crystal is stable in the CsCl crystal structure for 0 > 0,. The bifurcated equilibrium paths are calculated as
functions of temperature for three different fixed values of the dimensionless pressure P = 0.1 (compres-

sion), 0, and —0.1 (tension) with P = p/G where G = L§4(I()J(0r, 0), 6,) the shear modulus at the reference
temperature and zero pressure.

The numerical solution of (2.4) is accomplished through an incremental Newton—-Raphson method
which is described in Elliott et al. (in press). There are four types of equilibrium paths found in our nu-
merical calculations (each corresponding to a different lattice symmetry) which are listed below according
to the increasing number of the degrees of freedom required for their description

(U, 0 0 7

Uebic=| 0 Uy 0 |, (4.1a)
0 0 Uy
[Un U Up]

Unhombo = | Uz U Upp |, (4.1b)
LU Un Un
[Un U 0 ]

Uoino = | Uz Un 0 |, (4.1c)
L0 0 Uss
Un U Us

Unono = | Uz U Ul |. (4.1d)
LUz Uiz Us |

An arc length continuation method avoids numerical difficulties associated with limit loads. The stability
of each equilibrium point on every path is evaluated by finding the eigenvalues of 8*¢/0U0U using a cyclic
Jacobi method (see Patel, 1994). The same method identifies zero eigenvalues which signal the presence of
bifurcation points on an equilibrium path and hence the need to search for emerging branches with lower
(or possibly higher) symmetry (assuming of course that the critical point is not a limit load).

The results of the numerical calculations are shown in Figs. 4-6. In Fig. 4 constant pressure graphs are
plotted for the lattice angle y(cos(y) = Uy Uy) versus temperature. The baseline case (already presented in
Elliott et al. (in press)) is Fig. 4(b) which corresponds to the pressure-free crystal, while Fig. 4(a) and (c)
correspond to hydrostatic compression (P = 0.1) and tension (P = —0.1), respectively. There are certain
common features shared by the three graphs. The CsCl cubic crystal (y = 90°) is stable (solid line) for the
higher temperature range and unstable (dotted line) for the lower temperature range of the graph. A triple
bifurcation point occurs at about 0.(P = 0) = 263 K and four rhombohedral and three orthorhombic paths
emerge from this critical point as discussed in the previous section, but only one representative path from
each is shown here. We observe that the rhombohedral path is initially unstable and asymmetric about the
principal branch and that the orthorhombic path is symmetric, respectively, as expected from the as-
ymptotic analysis. For our particular choice of atomic potential, the orthorhombic path is unstable also.
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Fig. 4. Calculated equilibrium paths showing unit cell angle as a function of temperature for three different pressures.

Another common feature of the three cases is the presence of a branch with a cubic NaCl structure at
y = 60°. The presence of this equilibrium branch, which corresponds to a reconstructive transformation
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Fig. 5. Unit cell side-length as a function of temperature for three different pressures.

from the CsCl configuration, has been discussed in Elliott et al. (in press). A triple bifurcation point is also
found on the NaCl branch, but at a higher temperature than that of the CsCl branch. In addition, the NaCl
path’s stability is reversed as compared to the CsCl path, i.e. it is unstable for the higher range of tem-
peratures and stable for the lower range of temperatures in the graph. In fact, a similar structure change
actually occurs in the CsCl ionic compound near 460 °C above which it transforms to a NaCl-like structure
(see Buerger (1951), which refers to this as a dilatational transformation). The observations about the
nature of the bifurcation paths through the critical point on the NaCl branch, i.e. the symmetry/asymmetry
of the paths and their stability, carry over from the discussion of the triple bifurcation point on the CsCl
branch and need not be repeated.

Looking now at the influence of hydrostatic compression on the equilibrium paths, we see no qualitative
difference between Fig. 4(a) and (b), except for the absence of the two limit loads in the rhombohedral path
near the NaCl triple bifurcation point in Fig. 4(a). The slight increase (of the order of 2 K) of the critical
temperature at the triple bifurcation point on the CsCl branch in Fig. 4(a) as compared to Fig. 4(b) can be
explained by studying the triple root in (3.4). At criticality the shear modulus for the CsCl branch is
LS, = pA/2. Since Ly depends on the pressure through the slowly changing normal strain of the branch
2(0,p) (see red line in Fig. 5(a)) L5, > 0 at criticality (since pA/2 > 0), the critical point shifts towards a
higher temperature. According to this argument, the opposite should have been true for the shifting of the
critical point on the NaCl branch (i.e. 6. should be lower than in the stress free case), however in this case
A(0, p) is more sensitive to pressure (see blue lines in Fig. 5) and results in a positive shifting of 6. as well.
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Fig. 6. Dimensionless energy density of stable equilibrium paths as a function of temperature for three different pressures.

The influence of the hydrostatic tension on the equilibrium paths of the crystal is more pronounced than
that of hydrostatic compression (for the same, relatively large, absolute value of the dimensionless pressure)
as revealed by comparing Fig. 4(b) and (c). Consistent with the above discussion, the critical points on the
two cubic branches occur at lower temperatures than their stress-free counterparts. Notice the absence of
the rhombohedral branch above a temperature of about 278 K for hydrostatic tension in Fig. 4(c).
Moreover, the entire rhombohedral branch is unstable. Another important difference is that the NaCl cubic
branch reaches a limit point at about 306 K.

The results of the same numerical calculations that were depicted in Fig. 4 are plotted in Fig. 5 in the
form of unit cell side length @ (¢ = (U}, Uj 1k)l/2) versus temperature. As expected from the discussion of Fig.
4, hydrostatic compression has a relatively minor influence on «a, as evidenced by comparing the graphs in
Fig. 5(a) and (b). There is, however, a significant influence of hydrostatic tension, as observed in particular
by the evolution of the side of the cubic NaCl path in Fig. 5(c). In contrast to the zero or compressive
pressure cases, for tension two NaCl equilibrium configurations are found with substantially different unit
cell sizes for temperatures below about 306 K, while no NaCl branch exists above this temperature.

Finally, the dimensionless energy &/G of the stable equilibrium paths is depicted in Fig. 6 for the same
values of the dimensionless pressure. Notice that for lower temperatures in these graphs the NaCl branch is
stable and has the lowest energy, while for the higher temperatures the CsCl branch is the stable, lowest
energy branch. The stable rhombohedral branch, whenever it exists always has higher energy than the CsCl
branch. As discussed in Elliott et al. (in press) the overlap of stable branches of the two cubic structures is
suggestive of a hysteretic, temperature-induced, reconstructive transformation. Hydrostatic compression
has the effect of shifting this overlap regime towards somewhat higher temperatures.
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5. Summary and conclusions

The temperature-dependent atomic pair potential model for uniformly strained perfect bi-atomic crystals
of infinite extent, which was introduced by Elliott et al. (in press) is extended to include the effects of
hydrostatic pressure. Using temperature as the loading parameter, equilibrium paths are calculated and
compared for three different values of the hydrostatic pressure p = 0.1G, p = 0, and p = —0.1G (where G is
the shear modulus of the lattice at the reference temperature and zero pressure). Within a certain range of
temperature and unit cell angle we have identified all the equilibrium branches which are continuously
connected with the principal path of a cubic, CsCl crystal structure.

The main conclusion of our study is that hydrostatic compression causes a shift of the critical points on
the principal paths towards higher temperatures. In addition, compression produces smaller changes to the
equilibrium solutions of the system than a hydrostatic tension of the same magnitude. In this case only two
stable branches remain, each corresponding to a crystal with cubic symmetry.

The efforts made here are a first attempt to include the influence of applied mechanical stress on the
nano-mechanical model of Elliott et al. (in press). The model presented here lacks the existence of a stable
low symmetry equilibrium solution path. Such a path is an important feature of any material which exhibits
the shape memory effect (see Bhattacharya, 1998). The authors believe that the addition of new kinematical
degrees of freedom (such as the “shuffles” observed in the NiTi B2 — B19' transformation) or better atomic
potentials such as the modified embedded atom method (MEAM, see Baskes, 1987) potentials (which can
capture the angular bonding characteristics of many metals) are likely to help rectify this deficiency. Al-
though further improvements are necessary for a more realistic modeling of SMAs, the proposed nano-
mechanical framework has shown its usefulness as a fundamental vehicle for further studies.
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